
From: Smith-Tone, Daniel C. (Fed)
To: Dang, Quynh H. (Fed); Cooper, David (Fed); Kelsey, John M. (Fed); internal-pqc
Subject: RE: SPHINCS+ write-up
Date: Wednesday, June 10, 2020 9:44:10 AM
Attachments: image001.png

image002.png

This discussion makes me nervous in the same way that standardizing stateful HBS and stating that we can validate hybrid signatures
made me nervous: I just don’t think that it is a good idea. Anyway, on stateful HBS and hybrid signatures, that check’s been cashed. For
the number of signatures requirement, the check has not been written and I hope we don’t.

To me, this situation is comparable to the memory issue with a few twists. As David mentioned, I don’t think that it is likely that we could
really limit the use cases of SPHINCS+ even if we wanted to (especially if you consider the popularity and influence of the proponents). I
guess that I agree that 2^48 signatures is a big number, and it is hard to imagine a threat to a realistic application because of that number
of signatures, but I don’t think that we need to go very much below that bound for there to be problems. If we are asking for
astronomical figures for other aspects of security, I think that it makes sense to have a similar perspective here. Hedging our bets against
not only new technology (relevant for the memory discussion) but new applications we can’t consider yet (relevant here) and the fact
that we can’t really control where these things are used would make me more comfortable with keeping a ridiculously high bound on the
number of required signatures, something more in line with our stance on AES-operations and on memory issues. (The situation is not
exactly the same as that for memory, though. Asking a server for 2^48 signatures seems more like a DoS attack than a cryptographic
one.)

Cheers,
Daniel

From: Dang, Quynh H. (Fed) <quynh.dang@nist.gov>
Sent: Wednesday, June 10, 2020 9:14 AM
To: Cooper, David A. (Fed) <david.cooper@nist.gov>; Kelsey, John M. (Fed) <john.kelsey@nist.gov>; Smith-Tone, Daniel C. (Fed)
<daniel.smith@nist.gov>; internal-pqc <internal-pqc@nist.gov>
Subject: Re: SPHINCS+ write-up

Hi Dave, John and the rest of our team,

There are a few problems with SPING+.

1) If the other standardized sig algorithm(s) are not secure, SPING+ probably won't be their replacement, especially with new
options which have much smaller max. numbers of sigs.

The reason is that standard bodies would want algorithms which would work pretty much for all situations without the risk of
using too many sigs. So, they would have to adopt another algorithm beside SPING+. When they adopt this algorithm, there
would be likely no need for SPING+ unless there are no other secure algorithms that they can adopt: This is a very unlikely
situation. They would likely prefer rainbow over SPING+ because rainbow does not have a small max. number of sigs problem.
Rainbow's big public key issue can be improved by any of the methods that I mentioned before. In addition, sigs can't be reused,
but public keys can be sent just once and there are more sigs in TLS than public keys.

2) It is extremely complicated and risky that all peers in all connections must keep a counter of sigs they generate: when a
machine is restarted, the counter is lost. To deal with this, basically, people would have to use similar costly techniques in
handling state for stateful hbs.

Quynh.

From: David A. Cooper <david.cooper@nist.gov>
Sent: Wednesday, June 10, 2020 8:37 AM
To: Kelsey, John M. (Fed) <john.kelsey@nist.gov>; Smith-Tone, Daniel C. (Fed) <daniel.smith@nist.gov>; internal-pqc <internal-
pqc@nist.gov>
Subject: Re: SPHINCS+ write-up

I understand the motivation and why signatures can be smaller and faster if the maximum number of signatures is reduced. The SAGE
script allows us to better quantify the impact of allowing such parameter sets. Given the numbers in the table below, is it fair to say that
any of the parameter sets with fewer max. sigs. are both much smaller and faster?

mailto:daniel.smith@nist.gov
mailto:quynh.dang@nist.gov
mailto:david.cooper@nist.gov
mailto:john.kelsey@nist.gov
mailto:internal-pqc@nist.gov
mailto:david.cooper@nist.gov
mailto:john.kelsey@nist.gov
mailto:daniel.smith@nist.gov
mailto:internal-pqc@nist.gov
mailto:internal-pqc@nist.gov

I am confused about how the parameter sets were chosen for the submission. According to the SAGE script, the chosen "fast" parameter
set takes about 120,480 hashes to create a signature of size 16,976. However, the SAGE script says there is a parameter set that would
create a signature of size 16,112 in about 116,114 hashes. What was the reason this smaller and faster option wasn't chosen? Is this an
indication that not all of the parameter set options listed by the SAGE script are usable?

I agree that the number 2^64 is somewhat arbitrary and it would be difficult for an application to generate more than 2^48 signatures.
But how much of a performance improvement would there need to be for us to consider allowing an exception for SPHINCS+?

Allowing parameter sets with max. sigs. of 2^32 or even 2^20 is a much different situation, as there will definitely be applications that
exceed these numbers of signatures. While we can say that the parameter sets are intended for special environments how do we limit
their use? This is an issue we've discuss a lot with respect to stateful hash-based signatures (and I would guess it is also an issue in the
lightweight cryptography project). The SP for stateful HBS says that they are only intended for certain types of applications, but there is no
way we can enforce that, and there are indications that they will be used more widely than we would like. For stateful HBS we decided to
impose limitations, such as that only hardware cryptographic modules that do not allow export of private keying material could be
validated. This was an unpopular limitation with commenters and I don't think we could get away with it for a specialized SPHINCS+
parameter set. For parameter sets with smaller max. sigs. (e.g., 2^32), would we just include a warning in the documentation not to
generate too many signatures with any one key (the way we do with 3DES) and hope that's enough?

I understand that the proposed text doesn't say NIST will allow such parameter sets, only that NIST may consider it. However, I think we
should be careful about including such text in the report, just as we were careful in responding to the question about modeling the
attacks that require very large amount of memory.

On 6/9/20 10:57 PM, Kelsey, John M. (Fed) wrote:

I’m not sure whether this makes sense, which is why I phrased it in the conditional tense. We might consider it, we’re not
promising to do so. We can omit that, but it seems worthwhile to float the idea that we might allow smaller-numbers-of-
keys versions of SPHINCS+ at some point in the future. The two places I’m thinking for this are:

1. If the other PQ signatures look too shaky, we might want SPHINCS+ as a fallback. In that case, the requirement for
2^{64} signatures per key seems like something we’d want to revisit, given that it makes the signatures much bigger
and slower, and that the specific number is very much pulled out of the air. (If we’d said 2^{48} signatures per key,
how many applications would have become questionable as a result?) For all the other signature schemes, I think this
number has very little performance impact; for SPHINCS+, it matters a lot becauser it says how big the hypertree has
to be.

2. If we wanted an alternative to stateful hbs, we might allow a much smaller SPHINCS+ (say, with a hypertree of only
2^{20} FORS keys). That would be longer/slower than a stateful scheme, but would only require limiting the number
of signatures, not maintaining a monotonic counter for the lifetime of the key.

--John

From: "Smith-Tone, Daniel C. (Fed)" <daniel.smith@nist.gov>
Date: Tuesday, June 9, 2020 at 17:12
To: "Cooper, David A. (Fed)" <david.cooper@nist.gov>, internal-pqc <internal-pqc@nist.gov>
Subject: RE: SPHINCS+ write-up

I think that (at least for me) I would need to know what the intended application is to have an idea of how reasonable it is to
allow this tradeoff. What applications are there for which we would prefer SPHINCS+ to other candidates AND be okay with
such low numbers of allowed signatures? I can’t think of anything at the moment.

mailto:daniel.smith@nist.gov
mailto:david.cooper@nist.gov
mailto:internal-pqc@nist.gov

From: David A. Cooper <david.cooper@nist.gov>
Sent: Tuesday, June 9, 2020 4:30 PM
To: internal-pqc <internal-pqc@nist.gov>
Subject: SPHINCS+ write-up

I'd like to discuss the text that is proposed for SPHINCS+:

One interesting tradeoff made in SPHINCS+ involves the number of signatures expected per key. The
size of the signature is quite sensitive to this number, and going from a limit of 264 to 248 or 232

signatures per key would allow for a much smaller and faster signature scheme. In the future, NIST may
consider variants of SPHINCS+ with fewer signatures allowed per key for use in some special
environments, for example as an alternative to stateful hash-based signatures.

Based on John's earlier suggestion, I tried the SPHINCS+ parameter exploration SAGE script available at
https://sphincs.org/software.html for various values of the maximum number of signatures at the 128-bit security
level. The SAGE script output tens of thousands of parameter set options, but below are a few of them for maximum
signature values of 264, 230, and 220. The two parameter sets shown for 264 are the ones that are specified in the
submission. The "speed" is an estimate of the number of hashes that need to be computed.

There are options that result in both faster signing and smaller signatures (with 230 max signatures, one-third the
signing time with 20% smaller signatures, or 56% smaller signatures with same signing time). However, introducing
options like this would come with risk. Are the speed and/or signature size savings worth the risk?

mailto:david.cooper@nist.gov
mailto:internal-pqc@nist.gov
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsphincs.org%2Fsoftware.html&data=02%7C01%7Cquynh.dang%40nist.gov%7C2d45852689cd403c994308d80d3b06ce%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637273894608628420&sdata=USvq2BXv3fTzs4rQX6CH7n%2FTvbWKuwHJzaKm6mPU0KU%3D&reserved=0

